rc 823 titanium dioxide manufacturers

As early as sixty years ago, zinc sulphide was first thought of as a pigment for coloring India rubber and a patent for the process of its manufacture was issued in England. But it was not until twenty years later that zinc sulphide and its manufacture was seriously considered as a pigment for paint, and in 1874 a patent was issued for a process of manufacturing a white pigment, composed of zinc sulphide and barium sulphate, known as Charlton white, also as Orr's white enamel. This was followed in 1876 by a patent issued to a manufacturer named Griffith and the product, which was similar in character to Charlton white, was known as Griffith's patent zinc white. In 1879 another patent for a more novel process was obtained by Griffith & Cawley, the product made under this process proving the best of the series placed upon the market up to that date. After that time many new processes were patented, all, however, tending to the same object, that of producing a white pigment, composed of zinc sulphide and barium carbonate, the results, however, in many cases ending with failure.

...

In an early study Jani et al. administred rutile TiO2 (500 nm) as a 0.1 ml of 2.5 % w/v suspension (12.5 mg/kg BW) to female Sprague Dawley rats, by oral gavage daily for 10 days and detected presence of particles in all the major gut associated lymphoid tissue as well as in distant organs such as the liver, spleen, lung and peritoneal tissue, but not in heart and kidney. The distribution and toxicity of nano- (25 nm, 80 nm) and submicron-sized (155 nm) TiO2 particles were evaluated in mice administered a large, single, oral dosing (5 g/kg BW) by gavage. In the animals that were sacrificed two weeks later, ICP-MS analysis showed that the particles were retained mainly in liver, spleen, kidney, and lung tissues, indicating that they can be transported to other tissues and organs after uptake by the gastrointestinal tract. Interestingly, although an extremely high dose was administrated, no acute toxicity was observed. In groups exposed to 80 nm and 155 nm particles, histopathological changes were observed in the liver, kidney and in the brain. The biochemical serum parameters also indicated liver, kidney and cardiovascular damage and were higher in mice treated with nano-sized (25 or 80 nm) TiO2 compared to submicron-sized (155 nm) TiO2. However, the main weaknesses of this study are the use of extremely high single dose and insufficient characterisation of the particles.

...

The first commercial production of TiO2 began in the early 20th century, using the sulfate process. This method involved reacting ilmenite ore with sulfuric acid to produce titanium sulfate, which was then calcined to obtain titanium dioxide. However, this process had several drawbacks, including high energy consumption, generation of large amounts of waste, and release of harmful gases such as sulfur dioxide. As a result, many factories transitioned to the chloride process, which offers higher purity TiO2 and reduced environmental impact.

...

Moreover, sustainability is becoming increasingly important in manufacturing practices. Companies that prioritize environmentally-friendly processes and ethically sourced materials can enhance their brand image and meet the rising consumer demand for sustainable products. While cheap titanium dioxide manufacturers may offer lower prices, businesses should also evaluate their commitment to sustainable practices and social responsibility.


...