antase and rutile type titanium dioxide

Here, NaOH or NH3 · H2O is used as a precipitant or pH regulator to react with FeSO4 to form ferrous hydroxide precipitation; Air is used as oxidant; The iron sheet reacts with sulfuric acid produced during the oxidative hydrolysis of FeSO4 to provide ferrous ions required in the reaction system and maintain the pH value of the solution. The alkali consumption of acid method is less and the particles are easy to wash. The relative rates of seed preparation and crystal growth determine the particle size, particle size distribution and particle morphology of iron yellow particles.

...

Although barium sulfate is almost completely inert, zinc sulfide degrades upon exposure to UV light, leading to darkening of the pigment. The severity of this UV reaction is dependent on a combination of two factors; how much zinc sulfide makes up the pigments formulation, and its total accumulated UV exposure. Depending on these factors the pigment itself can vary in shade over time, ranging from pure white all the way to grey or even black. To suppress this effect, a dopant may be used, such as a small amount of cobalt salts, which would be added to the formulation. This process creates cobalt-doped zinc sulfide. The cobalt salts help to stabilize zinc sulfide so it will not have as severe a reaction to UV exposure.

...

The landscape for anatase titanium dioxide manufacturers is evolving rapidly, driven by technological advancements and a shift towards sustainability. As industries continue to recognize the unique properties and benefits of anatase TiO2, the demand for high-quality products is expected to grow. Manufacturers that can innovate and adapt to changing market needs while maintaining environmental responsibility will emerge as leaders in this dynamic sector. The future of anatase titanium dioxide is bright, with promising opportunities across various industries committed to harnessing its potential for a greener future.


...