cas 13463-67-7 titanium dioxide manufacturers

Overall, anatase titanium dioxide is an essential ingredient in the production of high-quality paints. Its unique optical and chemical properties make it a preferred choice for paint manufacturers looking to create durable, attractive, and long-lasting coatings. By incorporating anatase titanium dioxide into their formulations, paints factories can produce paints that meet the highest standards of performance and aesthetics.

...

The conventional surface treatment methods of titanium alloy include glow discharge plasma deposition, oxygen ion implantation, hydrogen peroxide treatment, thermal oxidation, sol-gel method, anodic oxidation, microarc oxidation, laser alloying, and pulsed laser deposition. These methods have different characteristics and are applied in different fields. Glow discharge plasma deposition can get a clean surface, and the thickness of the oxide film obtained is 2 nm to 150 nm [28]. The oxide film obtained from oxygen ion implantation is thicker, about several microns [914]. Hydrogen peroxide treatment of titanium alloy surface is a process of chemical dissolution and oxidation [1516]. The dense part of the oxide film is less than 5 nm [1721]. The oxide film generated from the thermal oxidation method has a porous structure, and its thickness is commonly about 10-20 μm [2225]. The oxide film from the sol-gel method is rich in Ti-OH, a composition that could induce apatite nucleation and improve the combining of implants and bone. It has a thickness of less than 10 μm [2628]. Applied with the anodic oxidation method, the surface can generate a porous oxide film of 10 μm to 20 μm thickness [2931]. Similarly, the oxide film generated from the microarc oxidation method is also porous and has a thickness of 10 μm to 20 μm [3233].

...