titanium oxide rutile

Panzhihua Dongfang TiO2 manufacturer has 28 patents related to titanium dioxide production by sulfuric acid method, 3 research results, and 5 registered trademarks. Excellent quality, excellent covering power, excellent system dispersion, good whiteness, high brightness, and low oil absorption. The company’s products are exported to more than 40 countries and regions in the world, and the export ratio is nearly 40%. It is the second largest exporter in Panzhihua City after Panzhihua Iron and Steel. Top 50, Sichuan Enterprise Technology Center, Panzhihua Municipal Government “Advanced Foreign Trade Export Enterprise” and other titles

...

The demand for TiO2 has been steadily increasing over the years, driven by the growth of the paint and coatings industry, as well as the expansion of its use in other applications such as electronics and cosmetics. In addition, the increasing awareness of the environmental impact of traditional production methods has led to a growing interest in more sustainable production techniques, such as the use of bio-based feedstocks or the implementation of closed-loop processes.

...
  • The conventional surface treatment methods of titanium alloy include glow discharge plasma deposition, oxygen ion implantation, hydrogen peroxide treatment, thermal oxidation, sol-gel method, anodic oxidation, microarc oxidation, laser alloying, and pulsed laser deposition. These methods have different characteristics and are applied in different fields. Glow discharge plasma deposition can get a clean surface, and the thickness of the oxide film obtained is 2 nm to 150 nm [28]. The oxide film obtained from oxygen ion implantation is thicker, about several microns [914]. Hydrogen peroxide treatment of titanium alloy surface is a process of chemical dissolution and oxidation [1516]. The dense part of the oxide film is less than 5 nm [1721]. The oxide film generated from the thermal oxidation method has a porous structure, and its thickness is commonly about 10-20 μm [2225]. The oxide film from the sol-gel method is rich in Ti-OH, a composition that could induce apatite nucleation and improve the combining of implants and bone. It has a thickness of less than 10 μm [2628]. Applied with the anodic oxidation method, the surface can generate a porous oxide film of 10 μm to 20 μm thickness [2931]. Similarly, the oxide film generated from the microarc oxidation method is also porous and has a thickness of 10 μm to 20 μm [3233].