titanium dioxide rutile tio2 emulsion latex paints manufacturer

The aim of this work was to examine particularly the Degussa P25 titanium dioxide nanoparticles (P25TiO2NPs) because they are among the most employed ones in cosmetics. In fact, all kinds of titanium dioxide nanoparticles (TiO2NPs) have gained widespread commercialization over recent decades. This white pigment (TiO2NPs) is used in a broad range of applications, including food, personal care products (toothpaste, lotions, sunscreens, face creams), drugs, plastics, ceramics, and paints. The original source is abundant in Earth as a chemically inert amphoteric oxide, which is thermally stable, corrosion-resistant, and water-insoluble. This oxide is found in three different forms: rutile (the most stable and substantial form), brookite (rhombohedral), and anatase (tetragonal as rutile), of these, both rutile and anatase are of significant commercial importance in a wide range of applications [3]. Additionally, the nano-sized oxide exhibits interesting physical properties, one of them is the ability to act as semiconducting material under UV exposure. In fact, TiO2NPs are the most well-known and useful photocatalytic material, because of their relatively low price and photo-stability [4]. Although, this photoactivity could also cause undesired molecular damage in biological tissues and needs to be urgently assessed, due to their worldwide use. However, not all nanosized titanium dioxide have the same behavior. In 2007, Rampaul A and Parkin I questioned: “whether the anatase/rutile crystal form of titanium dioxide with an organosilane or dimethicone coat, a common titania type identified in sunscreens, is appropriate to use in sunscreen lotions” [5]. They also suggested that with further study, other types of functionalized titanium dioxide could potentially be safer alternatives. Later, Damiani found that the anatase form of TiO2NPs was the more photoactive one, and stated that it should be avoided for sunscreen formulations, in agreement with Barker and Branch (2008) [6,7].

...

One commonly used method for determining barium in TiO2 is atomic absorption spectroscopy (AAS). This technique involves vaporizing the sample and then measuring the absorbance of light by barium atoms at a specific wavelength. AAS offers high accuracy and precision, making it suitable for both laboratory and industrial settings. However, it requires specialized equipment and trained personnel, which can increase costs and turnaround time.

...
...

Tayca Corporation is a top TiO2 factory based in Japan that specializes in the production of titanium dioxide products for the global market. Tayca is known for its advanced technology and high-quality TiO2 pigments that are used in a variety of applications, including paints, plastics, and cosmetics. With a focus on innovation and sustainability, Tayca continues to push the boundaries of TiO2 production, setting new standards for quality and performance in the industry.

...