professional manufacturer of lithopone

The first commercial production of TiO2 began in the early 20th century, using the sulfate process. This method involved reacting ilmenite ore with sulfuric acid to produce titanium sulfate, which was then calcined to obtain titanium dioxide. However, this process had several drawbacks, including high energy consumption, generation of large amounts of waste, and release of harmful gases such as sulfur dioxide. As a result, many factories transitioned to the chloride process, which offers higher purity TiO2 and reduced environmental impact.

...

In conclusion, Lithopone B301 is a versatile and high-performance pigment that offers a wide range of benefits for various industries. As a leading supplier of Lithopone B301, we are committed to providing our customers with the best quality product and exceptional service. If you are looking for a reliable partner for your pigment needs, look no further than us. Contact us today to learn more about how we can help you meet your production goals and achieve success in your industry.

...

When the pH of titanium dioxide deviates from the optimal range, its properties and performance may be compromised. For example, at low pH levels (acidic conditions), titanium dioxide particles tend to agglomerate and form clusters, leading to poor dispersion and reduced whiteness. On the other hand, at high pH levels (alkaline conditions), the stability of titanium dioxide can be compromised, resulting in decreased opacity and color performance.

...

Prof Maged Younes, Chair of EFSA’s expert Panel on Food Additives and Flavourings (FAF), said: “Taking into account all available scientific studies and data, the Panel concluded that titanium dioxide can no longer be considered safe as a food additive . A critical element in reaching this conclusion is that we could not exclude genotoxicity concerns after consumption of titanium dioxide particles. After oral ingestion, the absorption of titanium dioxide particles is low, however they can accumulate in the body”. 

...

It’s true that titanium dioxide does not rank as high for UVA protection as zinc oxide, it ends up being a small difference (think about it like being 10 years old versus 10 years and 3 months old). This is not easily understood in terms of other factors affecting how sunscreen actives perform (such as the base formula), so many, including some dermatologists, assume that zinc oxide is superior to titanium dioxide for UVA protection. When carefully formulated, titanium dioxide provides excellent UVA protection. Its UVA protection peak is lower than that of zinc oxide, but both continue to provide protection throughout the UVA range for the same amount of time.

...