tio2 rutile type factories

The vitaminC@P25TiO2NPs, on the other side, did not have any effect on cell protection against ROS. This might be due to the fact that vitamin C, a well-known scavenger of ROS, could behave as prooxidant and even promote ROS and lipid peroxidation [39]. It was recently described that at small concentrations of vitamin C, the prooxidant effects dominate; while in large concentrations the antioxidant ones predominate [40]. The effect also depends on the cell state and the interaction of vitamin C with light. In this case, ascorbic acid may act as an antenna to harvest visible light when conjugated to P25TiO2NPs. Indeed, it was previously found that this combination (in some ratios) could have an improved photocatalytic activity, possibly due to a red shift in its light absorbance [41]. Further studies on vitaminC@P25TiO2NPs were not conducted, because of the poor antioxidant capacity [42].

...

In conclusion, the wholesale TiO2 market is a dynamic and competitive sector in the global chemical industry, driven by factors such as increasing demand for TiO2 in end-use industries, the shift towards sustainable production methods, and the demand for high-performance TiO2 grades. Manufacturers in the wholesale TiO2 market need to stay abreast of these trends and challenges to remain competitive and meet the evolving needs of their customers.

...

As mentioned above, these oxide NPs are harmful in part because both anatase and rutile forms are semiconductors and produce ROS. Particularly, P25 kind has band-gap energies estimated of 3.2 and 3.0 eV, equivalent to radiation wavelengths of approximately 388 and 414 nm, respectively. Irradiation at these wavelengths or below produces a separation of charge, resulting in a hole in the valence band and a free electron in the conduction band, due to the electron movement from the valence to conduction bands. These hole–electron pairs generate ROS when they interact with H2O or O2 [43,44]. It was described that they can cause an increase in ROS levels after exposure to UV-visible light [45]. The NBT assay in the studied samples showed that bare P25TiO2NPs produce a large amount of ROS, which is drastically reduced by functionalization with vitamin B2 (Fig. 5). This vitamin, also known as riboflavin, was discovered in 1872 as a yellow fluorescent pigment, [46] but its function as an essential vitamin for humans was established more than sixty years later, and its antioxidant capacity was not studied until the end of the XX century [47,48]. This antioxidant role in cells is partially explained because the glutathione reductase enzyme (GR) requires it for good functionality. This enzyme is the one in charge of the conversion of oxidized glutathione to its reduced form which acts as a powerful inner antioxidant and can quench the ROS [49,50]. The cost of this action is that the glutathione is converted to the oxidized form and needs to be recovered by the GR. Consequently, the cells need more vitamin B2. Another glutathione action is the protection against hydroperoxide. This activity is also mediated by riboflavin. Therefore, local delivery of this vitamin seems to significantly help the cells in their fight to keep the oxidative balance, once they are exposed to high levels of ROS.

...