...
2025-08-14 14:14
1411
Exploring the World of 98% Anatase Titanium Dioxide Paint Grade Manufacturers
...
2025-08-14 14:00
1642
One of the most common worries about titanium dioxide is that it could be a cancer-causing agent. The link between cancer and titanium dioxide traces back to a 1985 study where rats were exposed to high levels of titanium dioxide for two years, causing lung cancer. However, not all experts are convinced by this study.
...
2025-08-14 13:39
1278
The titanium dioxide industry is a crucial sector in the global chemical market, with a wide range of applications in various industries such as paints, plastics, paper, and textiles. Titanium dioxide, also known as TiO2, is a white pigment that is widely used for its high refractive index and excellent stability. The demand for titanium dioxide has been steadily increasing over the years, driven by the growing construction and automotive industries.
...
2025-08-14 13:33
2377
Particle Size and Shape
...
2025-08-14 13:33
904
One of the most significant advantages of TiO2 is its transparency. Transparent TiO2, also known as transparent pigmentary titanium dioxide or TTPO, has gained popularity in recent years due to its ability to provide both opacity and transparency. This unique property makes it suitable for applications where both functional and aesthetic properties are crucial, such as in automotive paints, cosmetics, and certain types of plastics.
...
2025-08-14 13:23
311
...
2025-08-14 12:53
2093
Phthalates on the fast-food menu:Chemicals linked to health problems found at McDonalds, Taco Bell
...
2025-08-14 12:34
876
Among the raw materials for coating production, titanium dioxide is more ideal, followed by lithopone. The covering power of lithopone is only that of titanium dioxide, and the price of lithopone is much lower than that of titanium dioxide, so lithopone still occupies a large market share.
...
2025-08-14 12:28
982
...
2025-08-14 11:57
786
Exploring the World of 98% Anatase Titanium Dioxide Paint Grade Manufacturers
One of the most common worries about titanium dioxide is that it could be a cancer-causing agent. The link between cancer and titanium dioxide traces back to a 1985 study where rats were exposed to high levels of titanium dioxide for two years, causing lung cancer. However, not all experts are convinced by this study.
The titanium dioxide industry is a crucial sector in the global chemical market, with a wide range of applications in various industries such as paints, plastics, paper, and textiles. Titanium dioxide, also known as TiO2, is a white pigment that is widely used for its high refractive index and excellent stability. The demand for titanium dioxide has been steadily increasing over the years, driven by the growing construction and automotive industries.
Particle Size and Shape
One of the most significant advantages of TiO2 is its transparency. Transparent TiO2, also known as transparent pigmentary titanium dioxide or TTPO, has gained popularity in recent years due to its ability to provide both opacity and transparency. This unique property makes it suitable for applications where both functional and aesthetic properties are crucial, such as in automotive paints, cosmetics, and certain types of plastics.
Phthalates on the fast-food menu:Chemicals linked to health problems found at McDonalds, Taco Bell
Among the raw materials for coating production, titanium dioxide is more ideal, followed by lithopone. The covering power of lithopone is only that of titanium dioxide, and the price of lithopone is much lower than that of titanium dioxide, so lithopone still occupies a large market share.
Procurement Resource provides latest prices of Titanium Dioxide. Each price database is tied to a user-friendly graphing tool dating back to 2014, which provides a range of functionalities: configuration of price series over user defined time period; comparison of product movements across countries; customisation of price currencies and unit; extraction of price data as excel files to be used offline.
The basic scenario of resistive switching in TiO2 (Jameson et al., 2007) assumes the formation and electromigration of oxygen vacancies between the electrodes (Baiatu et al., 1990), so that the distribution of concomitant n-type conductivity (Janotti et al., 2010) across the volume can eventually be controlled by an external electric bias, as schematically shown in Figure 1B. Direct observations with transmission electron microscopy (TEM) revealed more complex electroforming processes in TiO2 thin films. In one of the studies, a continuous Pt filament between the electrodes was observed in a planar Pt/TiO2/Pt memristor (Jang et al., 2016). As illustrated in Figure 1C, the corresponding switching mechanism was suggested as the formation of a conductive nanofilament with a high concentration of ionized oxygen vacancies and correspondingly reduced Ti3+ ions. These ions induce detachment and migration of Pt atoms from the electrode via strong metal–support interactions (Tauster, 1987). Another TEM investigation of a conductive TiO2 nanofilament revealed it to be a Magnéli phase TinO2n−1 (Kwon et al., 2010). Supposedly, its formation results from an increase in the concentrations of oxygen vacancies within a local nanoregion above their thermodynamically stable limit. This scenario is schematically shown in Figure 1D. Other hypothesized point defect mechanisms involve a contribution of cation and anion interstitials, although their behavior has been studied more in tantalum oxide (Wedig et al., 2015; Kumar et al., 2016). The plausible origins and mechanisms of memristive switching have been comprehensively reviewed in topical publications devoted to metal oxide memristors (Yang et al., 2008; Waser et al., 2009; Ielmini, 2016) as well as TiO2 (Jeong et al., 2011; Szot et al., 2011; Acharyya et al., 2014). The resistive switching mechanisms in memristive materials are regularly revisited and updated in the themed review publications (Sun et al., 2019; Wang et al., 2020).