titanium dioxide blr-895 factory

Manufacturers of rutile titanium dioxide employ different processes to produce this versatile pigment. The two primary methods are the sulfate process and the chloride process. In the sulfate process, ilmenite ore is treated with sulfuric acid to form titanyl sulfate solution, which is subsequently processed into titanium dioxide. This method typically results in a more opaque and durable pigment that is preferred in applications where weatherability is crucial. On the other hand, the chloride process involves treating rutile ore with chlorine gas to produce titanium tetrachloride, which is then refined and oxidized to form titanium dioxide. This method often yields a higher purity product suitable for applications requiring greater brightness and color stability.

...

From studies deemed relevant, the experts found that titanium dioxide as a food additive is poorly absorbed by the gastrointestinal tract of mice and rats, with no adverse effects observed in short-term studies in rodents receiving titanium dioxide in their diets. No observed adverse effect levels (NOAELs) of 15,000 milligrams per kilogram of bodyweight (mg/kg BW) per day and 5,000 mg/kg BW per day—the highest doses tested—were established for mice and rats, respectively.

...

In a 2020 study published in the Journal of Trace Elements in Medicine and Biology, researchers conducted an in vitro experiment to analyze the effects of TiO2 nanoparticles on a human neuroblastoma (SH-SY5Y) cell line. The scientists evaluated “reactive oxygen species (ROS) generation, apoptosis, cellular antioxidant response, endoplasmic reticulum stress and autophagy.” The results showed that exposure to the nanoparticles “induced ROS generation in a dose dependent manner, with values reaching up to 10 fold those of controls. Nrf2 nuclear localization and autophagy also increased in a dose dependent manner. Apoptosis increased by 4- to 10-fold compared to the control group, depending on the dose employed.” 

...
...