lithopone b301 b311 zns.baso4 factory

One notable aspect of TiO2 factories is their commitment to sustainable practices. Given the potential environmental impact of titanium dioxide production, these factories often incorporate advanced technologies to minimize waste and reduce emissions. For instance, the chloride process and sulfate process, two primary methods used in TiO2 manufacturing, are continuously being refined for higher efficiency and lower environmental footprint.

...

Here, NaOH or NH3 · H2O is used as a precipitant or pH regulator to react with FeSO4 to form ferrous hydroxide precipitation; Air is used as oxidant; The iron sheet reacts with sulfuric acid produced during the oxidative hydrolysis of FeSO4 to provide ferrous ions required in the reaction system and maintain the pH value of the solution. The alkali consumption of acid method is less and the particles are easy to wash. The relative rates of seed preparation and crystal growth determine the particle size, particle size distribution and particle morphology of iron yellow particles.

...

Titanium dioxide's significance in rubber production stems from its exceptional opacity and whiteness, which significantly improves the visual appeal of products like tires, rubber sheets, and various industrial rubber goods. Its ability to scatter light effectively makes it a preferred choice for creating bright, clean white shades in rubber products. Moreover, TiO2 also imparts heat resistance, enhances tensile strength, and improves the overall mechanical properties of the rubber, making it more durable and long-lasting.

...

For research published in Archives of Toxicology in 2020, scientists fed one group of mice a solution containing titanium dioxide for one month, and compared it to those that did not receive the additive. They found “the richness and evenness of gut microbiota were remarkably decreased and the gut microbial community compositions were significantly changed” in the titanium dioxide group when compared with the control group. The tests also revealed that the titanium dioxide exposure could cause locomotor dysfunction, or mobility issues “by elevating the excitement of enteric neurons, which might spread to the brain via gut-brain communication by vagal pathway.” The researchers concluded: “These findings provide valuable insights into the novel mechanism of TiO2NP-induced neurotoxicity. Understanding the microbiota-gut-brain axis will provide the foundation for potential therapeutic or prevention approaches against TiO2NP-induced gut and brain-related disorders.”

...