titanium dioxide medical use manufacturers

Mexican researchers sought to evaluate the effects of E171 across a span of conditions in mice, including its influence on behavior, along with the effects on the colon and liver. The research, published in 2020 in the journal Food and Chemical Toxicology, showed that E171 promoted anxiety and induced adenomas, or noncancerous tumors, in the colon. They also found that E171 heightened goblet cells hypertrophy and hyperplasia, which is typically seen in asthma patients and triggered by smoking or external pollutants and toxins. They also noted mucins overexpression in the mice, which can be linked to cancer cell formation. 

...

In addition to sustainability, chemical pigment manufacturers also need to focus on creating pigments that offer high performance and durability. Pigments need to withstand various environmental factors, such as sunlight, heat, and moisture, without losing their color or fading over time. This requires extensive testing and quality control measures to ensure that the pigments meet the industry standards and requirements for different applications.

...
...

Freshwater algae show low-to-moderate susceptibility to TiO2 exposure, with more pronounced toxic effects in the presence of UV irradiation. It has also been shown that nano-sized TiO2 is significantly more toxic to algae Pseudokirchneriella sub-capitata than submicron-sized TiO2. Hund-Rinke and Simon  reported that UV irradiated 25 nm TiO2 NPs are more toxic to green freshwater algae Desmodesmus subspicatus than UV irradiated 50 nm particles, which is in agreement with Hartmann et al. UV irradiated TiO2 NPs also inactivated other algae species such as AnabaenaMicrocystisMelsoira and Chroococcus. It was demonstrated that smaller particles have a greater potential to penetrate the cell interior than submicron-sized particles and larger aggregates. Studies have shown that the amount of TiO2 adsorbed on algal cells can be up to 2.3 times their own weight.

...

Some websites maintain titanium dioxide is inferior to zinc oxide, another mineral sunscreen ingredient whose core characteristics are similar to those of titanium dioxide. The reality is that titanium dioxide is a great broad-spectrum SPF ingredient and is widely used in all manner of sun-protection products. What gets confusing for some consumers is trying to decipher research that ranks sunscreen ingredients by a UV spectrum graph. By most standards, broad-spectrum coverage for sunscreen ingredients is defined as one that surpasses 360 nanometers (abbreviated as “nm” - how the sun’s rays are measured). Titanium dioxide exceeds this range of protection, but depending on whose research you read, it either performs as well as or slightly below zinc oxide.

...