c1 77891

While loose titanium dioxide presents a problem, titanium dioxide within sunscreen formulations presents a much safer option than conventional sunscreen chemicals like oxybenzone and octinoxate. However, titanium dioxide may become dangerous when it is nanoparticle size. Generally, nanoparticles can be 1000 times smaller than the width of a human hair. Despite nanoparticles becoming increasingly common across industries, they have not been properly assessed for human or environmental health effects, nor are they adequately regulated. Researchers don’t quite understand the impacts nanoparticles could have on human health and the environment. However, because of their infinitesimally small size, nanoparticles may be more chemically reactive and therefore more bioavailable, and may behave differently than larger particles of the same substance; these characteristics may lead to potential damage in the human body or ecosystem.

...
  • The first commercial production of TiO2 began in the early 20th century, using the sulfate process. This method involved reacting ilmenite ore with sulfuric acid to produce titanium sulfate, which was then calcined to obtain titanium dioxide. However, this process had several drawbacks, including high energy consumption, generation of large amounts of waste, and release of harmful gases such as sulfur dioxide. As a result, many factories transitioned to the chloride process, which offers higher purity TiO2 and reduced environmental impact.
  • Additionally, it is important to consider the pricing and delivery options offered by the manufacturer. It is beneficial to work with a manufacturer that offers competitive pricing and flexible delivery options to meet the needs of your business. This helps to ensure that you are able to obtain the titanium oxide you need at a reasonable cost and within a convenient timeframe.