china lithopone b301 28%

It offers several advantages in various applications. Its excellent opacity and brightness make it a popular choice in the production of paints, coatings, and printing inks, providing a cost-effective alternative to titanium dioxide. Lithopone's chemical stability enhances its durability in outdoor environments, making it suitable for outdoor coatings. Additionally, its low reactivity and compatibility with other pigments contribute to its versatility. Beyond coatings, lithopone finds utility in plastics, rubber, and paper industries. Overall, its multifaceted advantages and broad applications underscore this compound's significance in diverse industrial sectors.

...

Yes. According to the FDA and other regulatory agencies globally, “titanium dioxide may be safely used for coloring foods”. Titanium dioxide is safe to use, and the FDA provides strict guidance on how much can be used in food. The amount of food-grade titanium dioxide that is used is extremely small; the FDA has set a limit of 1 percent titanium dioxide for food. There is currently no indication of a health risk at this level of exposure through the diet.

...

Evonik, for instance, offers a range of micro TiO2 grades under the brand name Tioxide, catering to the demands of various industries. Cristal Global, with its extensive global presence, supplies micro TiO2 for applications in coatings, plastics, and more. Tronox, another major player, provides innovative solutions through their TioXide product line. Venator Materials, with its legacy in mineral processing, ensures reliable supply and technical support.

...

As mentioned above, these oxide NPs are harmful in part because both anatase and rutile forms are semiconductors and produce ROS. Particularly, P25 kind has band-gap energies estimated of 3.2 and 3.0 eV, equivalent to radiation wavelengths of approximately 388 and 414 nm, respectively. Irradiation at these wavelengths or below produces a separation of charge, resulting in a hole in the valence band and a free electron in the conduction band, due to the electron movement from the valence to conduction bands. These hole–electron pairs generate ROS when they interact with H2O or O2 [43,44]. It was described that they can cause an increase in ROS levels after exposure to UV-visible light [45]. The NBT assay in the studied samples showed that bare P25TiO2NPs produce a large amount of ROS, which is drastically reduced by functionalization with vitamin B2 (Fig. 5). This vitamin, also known as riboflavin, was discovered in 1872 as a yellow fluorescent pigment, [46] but its function as an essential vitamin for humans was established more than sixty years later, and its antioxidant capacity was not studied until the end of the XX century [47,48]. This antioxidant role in cells is partially explained because the glutathione reductase enzyme (GR) requires it for good functionality. This enzyme is the one in charge of the conversion of oxidized glutathione to its reduced form which acts as a powerful inner antioxidant and can quench the ROS [49,50]. The cost of this action is that the glutathione is converted to the oxidized form and needs to be recovered by the GR. Consequently, the cells need more vitamin B2. Another glutathione action is the protection against hydroperoxide. This activity is also mediated by riboflavin. Therefore, local delivery of this vitamin seems to significantly help the cells in their fight to keep the oxidative balance, once they are exposed to high levels of ROS.

...