application of lithopone factories

In a study published in the journal Environmental Toxicology and Pharmacology in 2020, researchers examined the effects of food additives titanium dioxide and silica on the intestinal tract by grouping and feeding mice three different food-grade particles — micro-TiO2, nano-TiO2, and nano-SiO2.  With all three groups, researchers observed changes in the gut microbiota, particularly mucus-associated bacteria. Furthermore, all three groups experienced inflammatory damage to the intestine, but the nano-TiO2 displayed the most pronounced changes. The researchers wrote: “Our results suggest that the toxic effects on the intestine were due to reduced intestinal mucus barrier function and an increase in metabolite lipopolysaccharides which activated the expression of inflammatory factors downstream. In mice exposed to nano-TiO2, the intestinal PKC/TLR4/NF-κB signaling pathway was activated. These findings will raise awareness of toxicities associated with the use of food-grade TiO2 and SiO2.”

...

Another essential aspect of titanium dioxide in plastic factories is its contribution to mechanical strength. When dispersed properly within the polymer matrix, TiO2 particles can reinforce the material, improving its tensile strength and impact resistance When dispersed properly within the polymer matrix, TiO2 particles can reinforce the material, improving its tensile strength and impact resistance When dispersed properly within the polymer matrix, TiO2 particles can reinforce the material, improving its tensile strength and impact resistance When dispersed properly within the polymer matrix, TiO2 particles can reinforce the material, improving its tensile strength and impact resistancetitanium dioxide for plastic factories. This enhancement makes the plastic more durable and suitable for load-bearing applications, such as pipes, containers, and construction materials.

...