wholesale gravimetric titanium dioxide determination

As they mimic the synapses in biological neurons, memristors became the key component for designing novel types of computing and information systems based on artificial neural networks, the so-called neuromorphic electronics (Zidan, 2018Wang and Zhuge, 2019Zhang et al., 2019b). Electronic artificial neurons with synaptic memristors are capable of emulating the associative memory, an important function of the brain (Pershin and Di Ventra, 2010). In addition, the technological simplicity of thin-film memristors based on transition metal oxides such as TiO2 allows their integration into electronic circuits with extremely high packing density. Memristor crossbars are technologically compatible with traditional integrated circuits, whose integration can be implemented within the complementary metal–oxide–semiconductor platform using nanoimprint lithography (Xia et al., 2009). Nowadays, the size of a Pt-TiOx-HfO2-Pt memristor crossbar can be as small as 2 nm (Pi et al., 2019). Thus, the inherent properties of memristors such as non-volatile resistive memory and synaptic plasticity, along with feasibly high integration density, are at the forefront of the new-type hardware performance of cognitive tasks, such as image recognition (Yao et al., 2017). The current state of the art, prospects, and challenges in the new brain-inspired computing concepts with memristive implementation have been comprehensively reviewed in topical papers (Jeong et al., 2016Xia and Yang, 2019Zhang et al., 2020). These reviews postulate that the newly emerging computing paradigm is still in its infancy, while the rapid development and current challenges in this field are related to the technological and materials aspects. The major concerns are the lack of understanding of the microscopic picture and the mechanisms of switching, as well as the unproven reliability of memristor materials. The choice of memristive materials as well as the methods of synthesis and fabrication affect the properties of memristive devices, including the amplitude of resistive switching, endurance, stochasticity, and data retention time.

...

2. Barite calcination method A solution of barium sulfide is prepared. The sulfuric acid and zinc oxide are reacted, purified by adding potassium permanganate and zinc powder, and compressed to obtain a zinc sulfate solution. Then, the prepared barium sulfide solution is mixed and subjected to a metathesis reaction to obtain a mixture of zinc sulfide and barium sulfate, and then the precipitate is subjected to pressure filtration, calcination, wet grinding, drying, and pulverization to obtain a zinc white product.

...

Manufacturing barium sulfate involves a meticulous process, typically starting with the extraction of barite, a naturally occurring mineral rich in barium sulfate. These mines, often located in China, India, and the United States, are the primary source of raw material for global barium sulfate factories. Once extracted, the barite undergoes purification to remove impurities like silica, iron, and clay, ensuring high-grade barium sulfate production.

...
...