rutile tio2 r-996 white pigment factory

...

With our strength and experience, we are confident that we can further provide our customers with more competitive Zns 28-30% Chemical Provide Lithopone Pigments Low Price and services. We have established a scientific quality control system, stricly obeyed in every process of the production, starting from the sourcing of raw materials to the dispatch of the final products. We pay attention to off-line visits and tracking, so as to better understand the effect of the product and optimize in a timely manner.

...

The conventional surface treatment methods of titanium alloy include glow discharge plasma deposition, oxygen ion implantation, hydrogen peroxide treatment, thermal oxidation, sol-gel method, anodic oxidation, microarc oxidation, laser alloying, and pulsed laser deposition. These methods have different characteristics and are applied in different fields. Glow discharge plasma deposition can get a clean surface, and the thickness of the oxide film obtained is 2 nm to 150 nm [28]. The oxide film obtained from oxygen ion implantation is thicker, about several microns [914]. Hydrogen peroxide treatment of titanium alloy surface is a process of chemical dissolution and oxidation [1516]. The dense part of the oxide film is less than 5 nm [1721]. The oxide film generated from the thermal oxidation method has a porous structure, and its thickness is commonly about 10-20 μm [2225]. The oxide film from the sol-gel method is rich in Ti-OH, a composition that could induce apatite nucleation and improve the combining of implants and bone. It has a thickness of less than 10 μm [2628]. Applied with the anodic oxidation method, the surface can generate a porous oxide film of 10 μm to 20 μm thickness [2931]. Similarly, the oxide film generated from the microarc oxidation method is also porous and has a thickness of 10 μm to 20 μm [3233].

...

In order to contribute with experimental evidence that could help to achieve a better understanding of the field for future regulation, in the present work, the biocompatibility of commercial P25TiO2NPs (one type of TiO2NPs used in sunscreen formulations) and two novel functionalized P25TiO2NPs were evaluated under solar simulated irradiation. White light, generated by red, blue, and yellow LEDs, together with UV ones, was chosen to simulate the solar spectra. Functionalization of TiO2NPs was made with antioxidant vitamins in order to prevent the expected photo-initiated ROS production when nanoparticles are exposed to the simulated solar spectra. Vitamin B2 (riboflavin) and vitamin C were chosen to carry out the functionalization because they are water-soluble, low-cost, and are a constitutive part of biological processes. In addition, it is known that both have the potential to prevent macromolecular oxidation by ROS [23][24][25][26].

...