barium sulfate color factory

The company has a wide variety of products, mainly including rutile titanium dioxide R818, R838, R868, R878, covering profiles, also have anatase TiO2 A1. Soft plastics and masterbatches, flat coatings, high-gloss coatings, water-based coatings, oil-based coatings, rubber, powder coatings, papermaking and other special fields, its products have been known in the market for their excellent whiteness and brightness, good hiding power and tinting power, stable application performance, and stable product quality and supply capacity.

...

Firstly, calcium carbonate factories can be categorized into two primary types natural and synthetic. Natural calcium carbonate factories extract limestone, marble, or chalk, all of which are rich in calcium carbonate, from the earth's crust. These materials are then processed through grinding and purification techniques to produce calcium carbonate powder. On the other hand, synthetic calcium carbonate factories create the compound through a chemical reaction between calcium oxide (quicklime) and carbon dioxide. This method is often used when a purer form of calcium carbonate is required.

...

The integrity of surface skin cells was evaluated with and without solar simulated irradiation. The integrity of the stratum corneum was significantly lower in individuals treated with P25TiO2NPs under the light in comparison to the ones that received the functionalized nanoparticles. Cell membrane suffering is evident (Fig. 9), and it is in accordance with the ROS levels and macromolecule oxidation found in vitro for the irradiated P25TiO2NPs. Disruption of the superficial skin layer was observed in all animals treated with no functionalized nanoparticles, under irradiation. This data expands the findings by the group of Professors Fubini and Fenoglio, who showed that P25TiO2NPs could impact the lipid structure at the top few microns of the stratum corneum [55]. Control skin under irradiation and without any topic formulation did not show changes in cell structure.

...


The refractive index, represented by the letter n, of a material describes how light propagates through and is bent by, that material. The magnitude of the refractive index, depending upon the electronic structure of the molecules, governs to what extent the path of light changes, when entering or leaving a material.

Particles in a matrix, like pigment particles surrounded by the binder system in a coating, ink or plastic, can change the propagation direction of light when the particles and the matrix have a different refractive index. This phenomenon, called scattering, results in both white color (provided that the particles do not absorb visible light) and the hiding power of the coating.

...