china chlorination process titanium dioxide

Lithopone, a versatile and widely used white pigment, is a blend of zinc sulfide (ZnS) and barium sulfate (BaSO4). This unique combination offers exceptional optical properties, making it an essential ingredient in various industries, particularly in paints, plastics, printing inks, and paper coatings. As a key player in the global market, lithopone ZnS-BaSO4 suppliers play a crucial role in ensuring consistent quality and availability to meet the ever-growing demand.

...
...

 At present, Lide powder is mainly produced in China. Most of the domestic Lide powder production is still using traditional methods. The main raw materials are zinc oxide, sulfuric acid and barium sulfide (barite and coal are produced by high temperature reduction). Zinc 45% ~ 70%. The traditional method for producing the Liede powder process is to use zinc bakelite containing more than 45% zinc as a raw material to be leached with sulfuric acid to obtain a crude zinc sulfate solution, and then to remove iron by potassium permanganate, and then replace the heavy metal with zinc powder and filter to obtain zinc sulfate. The refined liquid is further subjected to metathesis reaction, pressure filtration, calcination, rinsing, drying, and pulverization with strontium sulfide to obtain a series of different types of lindose powder containing zinc sulfide of 30% or more. The whole process is carried out in an acidic (ra<7) environment, which consumes a large amount of sulfuric acid. The sulfuric acid has strong corrosiveness and requires high production equipment. The final discharged slag is acidic slag, which brings new pollution to the environment. High requirements, high production costs, and poor quality of the products obtained.

...

Scientists analyzed research that examined how titanium dioxide nanoparticles interact with the brain for a 2015 review published in Nanoscale Research Letters. The researchers wrote: “Once the TiO2 NPs are translocated into the central nervous system through [certain] pathways, they may accumulate in the brain regions. For their slow elimination rates, those NPs could remain in the brain zones for a long period, and the Ti contents would gradually increase with repeated exposure.” After reviewing dozens of studies, the scientists concluded: “Long-term or chronic exposure to TiO2 nanoparticles could potentially lead to the gradually increased Ti contents in the brain, which may eventually induce impairments on the neurons and glial cells and lead to CNS dysfunction as a consequence.”

...