rutiletypetio2 supplier

In conclusion, anatase titanium dioxide is a safe and effective food-grade additive that provides a range of functional benefits to food products. Its stability, inertness, and lack of adverse effects make it an ideal choice for use in a wide variety of food applications. While there are still some unanswered questions about the safety of TiO2, the available evidence suggests that it is safe for use in food products at current levels of consumption.

...

Yes. According to the FDA and other regulatory agencies globally, “titanium dioxide may be safely used for coloring foods”. Titanium dioxide is safe to use, and the FDA provides strict guidance on how much can be used in food. The amount of food-grade titanium dioxide that is used is extremely small; the FDA has set a limit of 1 percent titanium dioxide for food. There is currently no indication of a health risk at this level of exposure through the diet.

...

We know that there are a lot of suspended organisms and colloidal impurities in natural water. The forms of suspended solids are different. Some large particles of suspended solids can settle under their own gravity. The other is colloidal particles, which is an important reason for the turbidity of water. Colloidal particles can not be removed by natural settlement, because colloidal particles in water are mainly clay with negative electricity The Brownian motion of colloidal particles and the hydration on the surface of colloidal particles make colloidal particles have dispersion stability. Among them, electrostatic repulsion has the greatest influence. If coagulant is added to water, it can provide a large number of positive ions and accelerate the coagulation and precipitation of colloid. Compressing the diffusion layer of micelles makes the potential change into an unstable factor, which is also conducive to the adsorption and condensation of micelles. The water molecules in the hydrated film have fixed contact with the colloidal particles and have high elastic viscosity. It is necessary to overcome the special resistance to expel these water molecules. This resistance hinders the direct contact of the colloidal particles. The existence of some hydrated films depends on the electric double layer state. If coagulant is added to reduce the zeta potential, the hydration may be weakened. The polymer materials formed after coagulant hydrolysis (the polymer materials directly added into water generally have chain structure) play an adsorption bridging role between the colloidal particles. Even if the zeta potential does not decrease or does not decrease much, the colloidal particles can not contact each other and can be adsorbed through the polymer chain Colloidal particles can also form flocs.

...