plastic ink, fine ceramics and other fields with rutile titanium dioxide
After the precipitate has been isolated, the next step is to dry and weigh the sample. This is done by heating the precipitate in a furnace to remove any remaining solvent and moisture. Once the sample has been dried, its weight is measured using an analytical balance.
The production of titanium dioxide powder has significant environmental impacts, primarily due to the energy-intensive nature of the chloride process
Lithopone, a zinc sulfide-based pigment, has been widely used in various industries due to its excellent whiteness, opacity, and chemical stability. Among the various grades of lithopone, 28B301 and 30B311 are particularly popular among manufacturers. In this article, we will provide a comprehensive guide on these two grades, including their properties, applications, and manufacturing processes.
In addition to its technical properties, lithopone pigment is also known for its environmental benefits

pigment lithopone quotes factories. It is non-toxic and does not pose a risk to human health or the environment when used in accordance with industry guidelines. This makes it a preferred choice for manufacturers looking to create sustainable products that meet regulatory requirements for safety and environmental protection.
Blanc de lithopone, blanc de Comines, zincolith, blanc de Charlton, blanc de Becton, tithopone
One of the primary advantages of lithopone is its cost-effectiveness compared to other white pigments like titanium dioxide
...
2025-08-14 16:05
1291
...
2025-08-14 15:41
2243
A few processes are used to produce TiO2 pigment. Rutile TiO2 is found in nature. This is because the rutile crystal structure is the thermodynamically stable form of titanium dioxide. In chemical processes natural TiO2 can be purified, thus obtaining synthetic TiO2. The pigment can be made from ores, rich in titanium, that are mined from the earth.
Two chemical routes are used to make both rutile and anatase TiO2 pigments.
...
2025-08-14 15:38
471
The impeller is a rotating component within the pump that transfers energy from the motor to the slurry. It plays a significant role in creating the flow and pressure necessary to move the slurry through the system. Impellers for slurry pumps are typically heavier and more robust than those used in standard pumps to withstand the harsh conditions encountered in abrasive applications. Their design can vary, with options for different shapes and sizes to accommodate specific types of slurries.
In the world of fluid handling, the choice between a vertical inline pump and a centrifugal pump can significantly impact system efficiency, maintenance, and overall performance. Both types of pumps are widely used in various industries, but they have distinct characteristics that make them suitable for different applications.
3. Casing
Adapting to High Liquid Level Conditions with SPR Slurry Pumps
Reducing operational costs is a top priority in mining and quarrying, where the cost of equipment maintenance and energy consumption can significantly impact profitability. The efficient operation of horizontal slurry pumps plays a key role in achieving cost savings. By selecting the right centrifugal pump for slurry and maintaining it with AH slurry pump parts, operators can optimize energy use, reduce wear on pump components, and minimize the need for costly repairs. The long-term benefits of efficient slurry pump operation include lower energy bills, reduced maintenance costs, and improved overall efficiency in mining and quarry processes.
Monitoring and Maintaining AH Slurry Pump Parts
The shaft transmits power from the motor to the impeller, while the bearing assembly supports the shaft and allows it to rotate smoothly. The durability of these components is essential, as they must endure continual mechanical stress and the harsh conditions present within the slurry.
The Role of Casting Slurry Pump Parts in Wear Management
5. Shaft and Bearing Assembly
- If needed, consult with industry experts or engineers to validate your selection and ensure optimal performance.
7. Expeller and Expeller Rings
Comparing Vertical and Horizontal Pumps: Key Considerations
Wear Factors: These components experience wear from the slurry and need to be checked regularly.
5. Seals
Wear Factors: Bearings can wear out due to the mechanical loads and need periodic lubrication and replacement.
Materials: Made from wear-resistant materials like high-chrome alloys or stainless steel.
The Compact Footprint of Vertical Multistage Centrifugal Pumps
- Locate your required flow rate and head on the chart to find potential pump models.
Wet parts in a pump, including the impeller, casing, and liners, are continuously exposed to the fluid being pumped, making them prone to wear. Monitoring the condition of these wet parts is crucial for maintaining pump performance. Regular checks and the use of wear indicators can help you determine when a pump wet end replacement is necessary. By establishing a monitoring routine and setting clear wear thresholds, you can replace these components before they fail, thus avoiding unscheduled downtime and extending the overall lifespan of the pump.
Additionally, propeller pumps are extensively used in industrial applications, such as in cooling systems for power plants and manufacturing facilities. They circulate water or other cooling fluids to regulate temperature, thus preventing overheating and ensuring operational efficiency. The design of propeller pumps allows them to operate continuously, which is ideal for industrial settings where downtime can lead to significant losses.
Function: The pump casing contains the slurry and guides it through the pump.
A few processes are used to produce TiO2 pigment. Rutile TiO2 is found in nature. This is because the rutile crystal structure is the thermodynamically stable form of titanium dioxide. In chemical processes natural TiO2 can be purified, thus obtaining synthetic TiO2. The pigment can be made from ores, rich in titanium, that are mined from the earth.
Two chemical routes are used to make both rutile and anatase TiO2 pigments.
The impeller is a rotating component within the pump that transfers energy from the motor to the slurry. It plays a significant role in creating the flow and pressure necessary to move the slurry through the system. Impellers for slurry pumps are typically heavier and more robust than those used in standard pumps to withstand the harsh conditions encountered in abrasive applications. Their design can vary, with options for different shapes and sizes to accommodate specific types of slurries.
In the world of fluid handling, the choice between a vertical inline pump and a centrifugal pump can significantly impact system efficiency, maintenance, and overall performance. Both types of pumps are widely used in various industries, but they have distinct characteristics that make them suitable for different applications.
3. Casing
Adapting to High Liquid Level Conditions with SPR Slurry Pumps
Reducing operational costs is a top priority in mining and quarrying, where the cost of equipment maintenance and energy consumption can significantly impact profitability. The efficient operation of horizontal slurry pumps plays a key role in achieving cost savings. By selecting the right centrifugal pump for slurry and maintaining it with AH slurry pump parts, operators can optimize energy use, reduce wear on pump components, and minimize the need for costly repairs. The long-term benefits of efficient slurry pump operation include lower energy bills, reduced maintenance costs, and improved overall efficiency in mining and quarry processes.
Monitoring and Maintaining AH Slurry Pump Parts
The shaft transmits power from the motor to the impeller, while the bearing assembly supports the shaft and allows it to rotate smoothly. The durability of these components is essential, as they must endure continual mechanical stress and the harsh conditions present within the slurry.
The Role of Casting Slurry Pump Parts in Wear Management
5. Shaft and Bearing Assembly
- If needed, consult with industry experts or engineers to validate your selection and ensure optimal performance.
7. Expeller and Expeller Rings
Comparing Vertical and Horizontal Pumps: Key Considerations
Wear Factors: These components experience wear from the slurry and need to be checked regularly.
5. Seals
Wear Factors: Bearings can wear out due to the mechanical loads and need periodic lubrication and replacement.
Materials: Made from wear-resistant materials like high-chrome alloys or stainless steel.
The Compact Footprint of Vertical Multistage Centrifugal Pumps
- Locate your required flow rate and head on the chart to find potential pump models.
Wet parts in a pump, including the impeller, casing, and liners, are continuously exposed to the fluid being pumped, making them prone to wear. Monitoring the condition of these wet parts is crucial for maintaining pump performance. Regular checks and the use of wear indicators can help you determine when a pump wet end replacement is necessary. By establishing a monitoring routine and setting clear wear thresholds, you can replace these components before they fail, thus avoiding unscheduled downtime and extending the overall lifespan of the pump.
Additionally, propeller pumps are extensively used in industrial applications, such as in cooling systems for power plants and manufacturing facilities. They circulate water or other cooling fluids to regulate temperature, thus preventing overheating and ensuring operational efficiency. The design of propeller pumps allows them to operate continuously, which is ideal for industrial settings where downtime can lead to significant losses.
Function: The pump casing contains the slurry and guides it through the pump.