...

Australian researchers examined how titanium dioxide as a food additive affected gut microbiota in mice by orally administering it in drinking water. The study, published in the journal Frontiers in Nutrition in 2019, found the treatment could “alter the release of bacterial metabolites in vivo and affect the spatial distribution of commensal bacteria in vitro by promoting biofilm formation. We also found reduced expression of the colonic mucin 2 gene, a key component of the intestinal mucus layer, and increased expression of the beta defensin gene, indicating that titanium dioxide significantly impacts gut homeostasis.” The changes were then linked to colonic inflammation, along with a higher expression of inflammatory cytokines, which are signal proteins that help with regulation. The researchers concluded that titanium dioxide “impairs gut homeostasis which may in turn prime the host for disease development.”

...

In conclusion, the precipitation of titanium dioxide is a crucial step in the production of this widely used white pigment. Understanding the various methods and factors that influence this process is essential for optimizing production efficiency and product quality. With ongoing research and development, it is expected that new and improved precipitation techniques will emerge in the future, further enhancing the sustainability and competitiveness of TiO2 production.

...

In addition to its biocompatibility, titanium dioxide also possesses excellent photocatalytic properties. When exposed to ultraviolet light, it can generate reactive oxygen species, which have potent antibacterial effects. This property makes titanium dioxide a promising candidate for developing anti-infective medical products. For example, titanium dioxide-coated medical devices could reduce the risk of bacterial infection by killing bacteria on their surface.

...