white powder pigment lithopone

The demand for TiO2 has been steadily increasing over the years, driven by the growth of the paint and coatings industry, as well as the expansion of its use in other applications such as electronics and cosmetics. In addition, the increasing awareness of the environmental impact of traditional production methods has led to a growing interest in more sustainable production techniques, such as the use of bio-based feedstocks or the implementation of closed-loop processes.

...

In addition to these traditional uses, titanium dioxide is gaining popularity in emerging fields such as photocatalysis and solar energy conversiontitanium dioxide product supplier. Its ability to absorb UV light and generate electron-hole pairs makes it suitable for use in devices that convert sunlight into electrical energy. Furthermore, titanium dioxide's photocatalytic properties allow it to break down organic pollutants in water and air, making it an eco-friendly solution for environmental remediation.

...

In an early study Jani et al. administred rutile TiO2 (500 nm) as a 0.1 ml of 2.5 % w/v suspension (12.5 mg/kg BW) to female Sprague Dawley rats, by oral gavage daily for 10 days and detected presence of particles in all the major gut associated lymphoid tissue as well as in distant organs such as the liver, spleen, lung and peritoneal tissue, but not in heart and kidney. The distribution and toxicity of nano- (25 nm, 80 nm) and submicron-sized (155 nm) TiO2 particles were evaluated in mice administered a large, single, oral dosing (5 g/kg BW) by gavage. In the animals that were sacrificed two weeks later, ICP-MS analysis showed that the particles were retained mainly in liver, spleen, kidney, and lung tissues, indicating that they can be transported to other tissues and organs after uptake by the gastrointestinal tract. Interestingly, although an extremely high dose was administrated, no acute toxicity was observed. In groups exposed to 80 nm and 155 nm particles, histopathological changes were observed in the liver, kidney and in the brain. The biochemical serum parameters also indicated liver, kidney and cardiovascular damage and were higher in mice treated with nano-sized (25 or 80 nm) TiO2 compared to submicron-sized (155 nm) TiO2. However, the main weaknesses of this study are the use of extremely high single dose and insufficient characterisation of the particles.

...