buff titanium dioxide

Macromolecular oxidation was detected in proteins by the colorimetric measurement of Advanced Oxidation Protein Products (AOPP) and in lipids by the colorimetric quantification of malondialdehyde (MDA). Standard curves were run with chloramine-T and 1,1,3,3 tetraethoxypropane (TEP) for AOPP and MDA methods, respectively [29][30][31]. Values were normalized to initial protein content in samples, measured with Bradford reagent [32]. The standard deviation of at least six measures was calculated and p-value < 0.05 were considered significant.

...

From studies deemed relevant, the experts found that titanium dioxide as a food additive is poorly absorbed by the gastrointestinal tract of mice and rats, with no adverse effects observed in short-term studies in rodents receiving titanium dioxide in their diets. No observed adverse effect levels (NOAELs) of 15,000 milligrams per kilogram of bodyweight (mg/kg BW) per day and 5,000 mg/kg BW per day—the highest doses tested—were established for mice and rats, respectively.

...

For a review published in 2023 in the journal Environmental Pollution, researchers examined E171 as a possible factor promoting obesity-related metabolic disorders. Because gut microbiota play an important role in immune function maintenance and development, and because titanium dioxide as a food additive has been shown to alter gut microbiota, researchers wanted to review “the dysregulations along the gut microbiota-immune system axis after oral TiO2 exposure compared to those reported in obese or diabetic patients, and to highlight potential mechanisms by which foodborne TiO2 nanoparticles may increase the susceptibility to develop obesity-related metabolic disorders.” The study authors discovered recurrent changes in the gut microbiota composition when exposed to titanium dioxide nanoparticles, with an imbalance of intestinal symbiotic microbiota. These changes and imbalances were also reported and played a role in the development of obesity, the authors wrote. This highlights “foodborne TiO2 nanoparticles as an endocrine disruptor-like chemical promoting obesity-related disorders,” the authors concluded.

...

The conventional surface treatment methods of titanium alloy include glow discharge plasma deposition, oxygen ion implantation, hydrogen peroxide treatment, thermal oxidation, sol-gel method, anodic oxidation, microarc oxidation, laser alloying, and pulsed laser deposition. These methods have different characteristics and are applied in different fields. Glow discharge plasma deposition can get a clean surface, and the thickness of the oxide film obtained is 2 nm to 150 nm [28]. The oxide film obtained from oxygen ion implantation is thicker, about several microns [914]. Hydrogen peroxide treatment of titanium alloy surface is a process of chemical dissolution and oxidation [1516]. The dense part of the oxide film is less than 5 nm [1721]. The oxide film generated from the thermal oxidation method has a porous structure, and its thickness is commonly about 10-20 μm [2225]. The oxide film from the sol-gel method is rich in Ti-OH, a composition that could induce apatite nucleation and improve the combining of implants and bone. It has a thickness of less than 10 μm [2628]. Applied with the anodic oxidation method, the surface can generate a porous oxide film of 10 μm to 20 μm thickness [2931]. Similarly, the oxide film generated from the microarc oxidation method is also porous and has a thickness of 10 μm to 20 μm [3233].

...