wholesale excellent tinting streng tio2
In addition to paints, TiO2 is also widely used in inks, especially in the printing industry. The bright white color of TiO2 helps to enhance the overall color vibrancy of inks, making them more visually appealing. TiO2 is also known for its stability and chemical inertness, making it a preferred choice for ink manufacturers who value consistent and reliable performance in their products.

≤0.6
Photocatalytic activity is another fascinating property of rutile TiO2
china rutile titanium dioxide. When exposed to UV light, it can initiate a series of chemical reactions that degrade organic pollutants into harmless substances. This property has led to the development of self-cleaning surfaces and air purifiers that use TiO2 as a photocatalyst.
...
2025-08-14 04:13
274
...
2025-08-14 03:51
1675
Trott, L.H. (1927). Lithopone and Its Part in Paints. The New Jersey Zinc Company..
...
2025-08-14 03:47
2784
g/100g
In the paint industry, titanium dioxide serves as a critical component due to its excellent hiding power and durability. It enhances the coverage of paints and protects substrates from UV damage, extending the lifespan of coatings. In plastics, it not only provides color but also improves the strength and stability of the final product. In paper manufacturing, titanium dioxide contributes to higher opacity and printability, resulting in superior graphic arts products.
Trott, L.H. (1927). Lithopone and Its Part in Paints. The New Jersey Zinc Company..
g/100g
In the paint industry, titanium dioxide serves as a critical component due to its excellent hiding power and durability. It enhances the coverage of paints and protects substrates from UV damage, extending the lifespan of coatings. In plastics, it not only provides color but also improves the strength and stability of the final product. In paper manufacturing, titanium dioxide contributes to higher opacity and printability, resulting in superior graphic arts products.
- As a responsible raw material supplier, we understand the importance of customer satisfaction and strive to provide our customers with the best possible service. We maintain close communication with our customers to understand their specific requirements and provide customized solutions to meet their needs. Our experienced technical team is always available to provide support and guidance throughout the procurement process.
- 3) Metathesis reaction: Dissolve the sulfide in distilled water to obtain a clear decomposition liquid, and add nonionic surfactant to stir evenly, then slowly add it to the zinc sulfate ammonia complex solution to form a metathesis reaction, and obtain Lide powder opacity. The liquid is separated by filtration, and the separated ammonia liquid is returned to the leaching after ammonia adjustment, and the separated nZnS-BaS0 4 crystal filter cake is put into the next step;
- As consumer preferences shift towards more natural and organic products, there is a growing demand for TIO2 pigments that are free from heavy metal impurities and other toxic substances. Manufacturers are therefore investing in advanced purification techniques to meet these stringent quality standards.
- Another classification lies in the scale of operation. Large-scale calcium carbonate factories, often equipped with advanced machinery and automation, cater to the demands of the global market. In contrast, small-scale or local factories, while having a lower production capacity, might serve regional needs or specialize in niche products.
The most significant uncertainty identified by the EU experts was the concern that TiO2 particles may have genotoxic effects. Genotoxicity refers to the ability of a chemical to directly damage genetic material within a cell (DNA), which may lead to cancer in certain situations. Although the experts did not conclude that TiO2 particles in E171 are genotoxic, they could not rule out the concern that they might be.
By doing so, we achieve cost reduction, increased film strength and improved fungicidal and algaecidal properties.
- At present, Lide powder is mainly produced in China. Most of the domestic Lide powder production is still using traditional methods. The main raw materials are zinc oxide, sulfuric acid and barium sulfide (barite and coal are produced by high temperature reduction). Zinc 45% ~ 70%. The traditional method for producing the Liede powder process is to use zinc bakelite containing more than 45% zinc as a raw material to be leached with sulfuric acid to obtain a crude zinc sulfate solution, and then to remove iron by potassium permanganate, and then replace the heavy metal with zinc powder and filter to obtain zinc sulfate. The refined liquid is further subjected to metathesis reaction, pressure filtration, calcination, rinsing, drying, and pulverization with strontium sulfide to obtain a series of different types of lindose powder containing zinc sulfide of 30% or more. The whole process is carried out in an acidic (ra<7) environment, which consumes a large amount of sulfuric acid. The sulfuric acid has strong corrosiveness and requires high production equipment. The final discharged slag is acidic slag, which brings new pollution to the environment. High requirements, high production costs, and poor quality of the products obtained.
- One of the key features of pigment lithopone is its high pigment content, which allows for a more efficient use of the compound in a wide range of applications. This makes it a cost-effective option for manufacturers looking to achieve the desired color and opacity in their products. Additionally, the chemical composition of lithopone pigment makes it resistant to fading and discoloration, ensuring that the products maintain their appearance over time.
- One of the most significant advantages of TiO2 is its transparency. Transparent TiO2, also known as transparent pigmentary titanium dioxide or TTPO, has gained popularity in recent years due to its ability to provide both opacity and transparency. This unique property makes it suitable for applications where both functional and aesthetic properties are crucial, such as in automotive paints, cosmetics, and certain types of plastics.
- One of the key reasons why anatase titanium dioxide is favored by coatings manufacturers is its superior UV resistance. This makes it an ideal ingredient for exterior coatings, as it helps protect surfaces from the damaging effects of the sun's ultraviolet rays. Additionally, anatase titanium dioxide is known for its high thermal stability, which enables coatings to withstand extreme temperatures without losing their effectiveness.
Manufacturers use titanium dioxide in some packaging to protect food from exposure to sunlight. Lab studies show it may also help stop bacteria from growing, and break down a gas that makes many fruits and vegetables ripen faster. That can keep products fresher and give them a longer shelf life.
Fengchen Group is a leading supplier of Lithopone B301, Lithopone B311 powder from China. We specialize in wholesale and bulk amounts, ensuring all our clients have the right supplier of Lithopone B301, Lithopone B311 powder when they need it. When you are going to buy or purchase Lithopone B301, Lithopone B311 powder, please turn to Fengchen Group.
Various titanium-rich minerals, including ilmenite and rutile, can serve as starting materials for the production of highly purified Titanium Dioxide. The predominant method employed in Titanium Dioxide production is the chloride process. In this process, the mineral, along with coke and chlorine, undergoes a reaction within a fluidized bed, resulting in the formation of primarily titanium tetrachloride and carbon dioxide. Subsequently, the titanium tetrachloride undergoes purification and conversion to Titanium Dioxide. Another method involves treating ilmenite with sulfuric acid to manufacture the chemical.
≥ 5 % of standard sample
In the experiment, the growth of iron yellow particles can be inhibited by adding additives, so as to prepare iron oxide yellow cryst
How pure TiO2 is extracted from titanium-containing molecules depends on the composition of the original mineral ores or feedstock. Two methods are used to manufacture pure TiO2: a sulphate process and a chloride process.
Over the last several years, nanoparticles have come under scrutiny for adverse health effects. Nanoparticles are ultrafine particles between 1 to 100 nanometers in diameter. (To put this in perspective, the average human hair is around 80,000 nanometers thick.) Because of their size, which can be engineered and manipulated at the atomic or molecular level, nanoparticles exhibit unique physical, chemical, and biological properties. Titanium dioxide is one of the most commonly produced nanoparticles in the world.
Tint reducing power, compared with standard samples
Because of its ability to absorb UV light, it's particularly useful as an ingredient in sunscreens — while its light-scattering properties are great for applications that require white opacity and brightness, such as in paint and paper.

Nano titanium dioxide is a versatile material that is used in many different industries due to its unique properties
. As a leading manufacturer of nano titanium dioxide, we pride ourselves on producing high-quality products that meet the needs of our customers.The basic scenario of resistive switching in TiO2 (Jameson et al., 2007) assumes the formation and electromigration of oxygen vacancies between the electrodes (Baiatu et al., 1990), so that the distribution of concomitant n-type conductivity (Janotti et al., 2010) across the volume can eventually be controlled by an external electric bias, as schematically shown in Figure 1B. Direct observations with transmission electron microscopy (TEM) revealed more complex electroforming processes in TiO2 thin films. In one of the studies, a continuous Pt filament between the electrodes was observed in a planar Pt/TiO2/Pt memristor (Jang et al., 2016). As illustrated in Figure 1C, the corresponding switching mechanism was suggested as the formation of a conductive nanofilament with a high concentration of ionized oxygen vacancies and correspondingly reduced Ti3+ ions. These ions induce detachment and migration of Pt atoms from the electrode via strong metal–support interactions (Tauster, 1987). Another TEM investigation of a conductive TiO2 nanofilament revealed it to be a Magnéli phase TinO2n−1 (Kwon et al., 2010). Supposedly, its formation results from an increase in the concentrations of oxygen vacancies within a local nanoregion above their thermodynamically stable limit. This scenario is schematically shown in Figure 1D. Other hypothesized point defect mechanisms involve a contribution of cation and anion interstitials, although their behavior has been studied more in tantalum oxide (Wedig et al., 2015; Kumar et al., 2016). The plausible origins and mechanisms of memristive switching have been comprehensively reviewed in topical publications devoted to metal oxide memristors (Yang et al., 2008; Waser et al., 2009; Ielmini, 2016) as well as TiO2 (Jeong et al., 2011; Szot et al., 2011; Acharyya et al., 2014). The resistive switching mechanisms in memristive materials are regularly revisited and updated in the themed review publications (Sun et al., 2019; Wang et al., 2020).

As early as sixty years ago, zinc sulphide was first thought of as a pigment for coloring India rubber and a patent for the process of its manufacture was issued in England. But it was not until twenty years later that zinc sulphide and its manufacture was seriously considered as a pigment for paint, and in 1874 a patent was issued for a process of manufacturing a white pigment, composed of zinc sulphide and barium sulphate, known as Charlton white, also as Orr's white enamel. This was followed in 1876 by a patent issued to a manufacturer named Griffith and the product, which was similar in character to Charlton white, was known as Griffith's patent zinc white. In 1879 another patent for a more novel process was obtained by Griffith & Cawley, the product made under this process proving the best of the series placed upon the market up to that date. After that time many new processes were patented, all, however, tending to the same object, that of producing a white pigment, composed of zinc sulphide and barium carbonate, the results, however, in many cases ending with failure.
Prof. Matthew Wright, chair of EFSA’s working group on E171, noted: “Although the evidence for general toxic effects was not conclusive, on the basis of the new data and strengthened methods we could not rule out a concern for genotoxicity and consequently we could not establish a safe level for daily intake of the food additive.”
’.