china good whiteness titanium dioxide rutile factory for coating

In a study published in the journal Environmental Toxicology and Pharmacology in 2020, researchers examined the effects of food additives titanium dioxide and silica on the intestinal tract by grouping and feeding mice three different food-grade particles — micro-TiO2, nano-TiO2, and nano-SiO2.  With all three groups, researchers observed changes in the gut microbiota, particularly mucus-associated bacteria. Furthermore, all three groups experienced inflammatory damage to the intestine, but the nano-TiO2 displayed the most pronounced changes. The researchers wrote: “Our results suggest that the toxic effects on the intestine were due to reduced intestinal mucus barrier function and an increase in metabolite lipopolysaccharides which activated the expression of inflammatory factors downstream. In mice exposed to nano-TiO2, the intestinal PKC/TLR4/NF-κB signaling pathway was activated. These findings will raise awareness of toxicities associated with the use of food-grade TiO2 and SiO2.”

...

The toxicity of P25TiO2NPs was evaluated in both prokaryotic (Fig. 3) and eukaryotic cells (Fig. 4). The XTT assay was chosen to measure the cell viability in bacterial cultures of MSSA, a normal skin microbiota microorganism. The reduction in the viability of samples with bare NPs is notorious, possibly due to the described ROS production from the interaction of P25TiO2NPs with light [37]. This effect seems to be avoided when they are functionalized with vitamin B2. Also, the most concentrated vitaminB2@P25TiO2NPs sample (0.2 mg/mL) shows up to 60% more absorbance after 6 h compared to the bare NPs (due to normal cell replication). This may indicate that the antioxidant effect of the vitamin B2 coating is greater than the oxidation damage produced by the NPs. This protective capacity could be attributed to the glutathione redox cycle and the conversion of reduced riboflavin to its oxidized form [38]. Values of cell viability greater than 100% are not rare and could be understood because the XTT assay actually measure metabolic activity when reducing the tetrazole to formazan. It is usually assumed that conversion is dependent on the number of viable cells, but it could also be related to an expected increased enzymatic activity when cells are exposed to small doses of some new substance. Further analysis showed that this effect was not the only one responsible for better cell viability of vitaminB@P25TiO2NPs treated samples.

...