- One of the key challenges in the production of titanium dioxide is controlling the particle size and morphology. The size and shape of the particles can significantly affect the performance of the final product. Therefore, manufacturers use a variety of techniques, such as precipitation, hydrothermal synthesis, and flame spray pyrolysis, to control these parameters.
Titanium Dioxide/TiO2/Titanium Oxide Free Sample
Lithopone was discovered in the 1870s by DuPont. It was manufactured by Krebs Pigments and Chemical Company and other companies.[2] The material came in different seals, which varied in the content of zinc sulfide. Gold seal and Bronze seals contain 40-50% zinc sulfide, offering more hiding power and strength.[3] Although its popularity peaked around 1920, approximately 223,352 tons were produced in 1990. It is mainly used in paints, putty, and in plastics.[1]
Even if you’re not familiar with titanium dioxide in makeup, it’s quite likely you’ve seen it in sunscreens, specifically physical formulas. Titanium dioxide is beloved in cosmetics not only for the pigment and coloration it can provide but also for the way it reacts to light.
Based on this opinion, the European Commission and the Member States agreed to remove all uses of titanium dioxide as an additive in food. In January 2022, a Regulation withdrawing the authorisation to use titanium dioxide as a food additive in food products was adopted i.e. Commission Regulation (EU) 2022/63.
Fig. 5. ROS values (Abs of NBT) in samples of MSSA treated with A: 0.2 mg/mL P25TiO2NPs; B: 0.02 mg/mL P25TiO2NPs; C: 0.2 mg/mL VitaminB2@P25TiO2NPs; D: 0.02 mg/mL VitaminB2@P25TiO2NPs after 3 h of irradiation (red) and 6 h (blue). SD < 0.20 and p < 0.05 between C-D and A-B.
Potential hazards of oral exposure to TiO2 NPs

Titanium dioxide is predominantly used as a pigment in products such as paints, coatings, plastics, food, cosmetics, and paper. The ability of TiO2 to scatter light and provide a white color makes it an essential ingredient in achieving high-quality finishes in these applications. However, the production of titanium dioxide can be complex and costly, given that it involves raw materials such as ilmenite and rutile, as well as advanced processing technologies. Manufacturers are continuously striving to optimize costs without compromising quality, making the search for affordable suppliers a top priority for many businesses.